Hard Pixel Mining for Depth Privileged Semantic Segmentation

نویسندگان

چکیده

Semantic segmentation has achieved remarkable progress but remains challenging due to the complex scene, object occlusion, and so on. Some research works have attempted use extra information such as a depth map help RGB based semantic because could provide complementary geometric cues. However, inaccessibility of sensors, is usually unavailable for test images. In this paper, we leverage only training images privileged mine hard pixels in segmentation, which available not Specifically, propose novel Loss Weight Module, outputs loss weight by employing two depth-related measurements pixels: Depth Prediction Error Depth-aware Segmentation Error. The then applied loss, with goal learning more robust model paying attention pixels. Besides, also explore curriculum strategy on map. Meanwhile, fully different scales, apply our module multi-scale side outputs. Our mining method achieves state-of-the-art results three benchmark datasets, even outperforms methods need input during testing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Per-Pixel Feedback for improving Semantic Segmentation

Semantic segmentation is the task of assigning a label to each pixel in the image.In recent years, deep convolutional neural networks have been driving advances in multiple tasks related to cognition. Although, DCNNs have resulted in unprecedented visual recognition performances, they offer little transparency. To understand how DCNN based models work at the task of semantic segmentation, we tr...

متن کامل

Indoor Semantic Segmentation using depth information

This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on hand-crafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. We obtain state-of-the-art on the NYU-v2 depth dataset with an accuracy of 64...

متن کامل

Depth Adaptive Deep Neural Network for Semantic Segmentation

In this work, we present the depth-adaptive deep neural network using a depth map for semantic segmentation. Typical deep neural networks receive inputs at the predetermined locations regardless of the distance from the camera. This fixed receptive field presents a challenge to generalize the features of objects at various distances in neural networks. Specifically, the predetermined receptive ...

متن کامل

Contour-aware network for semantic segmentation via adaptive depth

Semantic segmentation has been widely investigated for its important role in computer vision. However, some challenges still exist. The first challenge is how to perceive semantic regions with various attributes, which can result in unbalanced distribution of training samples. Another challenge is accurate semantic boundary determination. In this paper, a contour-aware network for semantic segm...

متن کامل

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation

The deficiency of segmentation labels is one of the main obstacles to semantic segmentation in the wild. To alleviate this issue, we present a novel framework that generates segmentation labels of images given their image-level class labels. In this weakly supervised setting, trained models have been known to segment local discriminative parts rather than the entire object area. Our solution is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Multimedia

سال: 2021

ISSN: ['1520-9210', '1941-0077']

DOI: https://doi.org/10.1109/tmm.2020.3035231